
Software Apocalypse

W.T. (Wim) Goes | Directeur Valori Software Improvement
VALORI | Orteliuslaan 1000 | Utrecht | NL
M +31 6 5 0 99 9 66 8
E WIMGOES@VALORI.NL | WWW.VALORI.NL

19 April 2018

As a Don Quixote we regard an increasing flock of sheep
as an army of professionals

Contents

• The increasing risk of software failure
• What measures do we have in place?
• The road ahead
• Questions / Discussion

Software Apocalypse | 19 April 2018 | 2

The increasing risk of software failure
A first example – The Mars Climate Orbiter

Software Apocalypse | 19 April 2018 | 3

• We all know the examples of failing IT systems. Failing IT
systems are an increasing risk for our society and will cost us
more and more. Our exploration of failing IT systems starts
with a classic example, the Mars Climate Orbiter.

• The Mars Climate Orbiter was a robotic space probe
launched by NASA on December 11, 1998 to study the
Martian climate, Martian atmosphere, and surface changes.

• NASA lost a $125 million Mars orbiter because a Lockheed
Martin engineering team used English units of measurement
while the agency's team used the more conventional metric
system for a key spacecraft operation.

• With two teams following different unit systems and no strict
conversion checks in place, this is a textbook example of why
interface documents have to be precise. The end result was
that the module came in too low and too fast and
disintegrated.

The increasing risk of software failure
What did NASA do to prevent bugs and failures?

Software Apocalypse | 19 April 2018 | 4

• Defects in software are called bugs. Constructing software is
very time consuming and error prone.
• The first ‘bug’ (1946) in the Harvard Mark II computer

• Intrinsic complexity of software development
• The trouble with making things out of code, as opposed to

something physical, is the invisibility to the eye.
• "No one's skull is really big enough to contain a modern

computer program" (Dijkstra, The Humble Programmer,
1972)

• Software has enabled us to make the most intricate
machines that have ever existed. And yet we have hardly
noticed, because all of that complexity is packed into tiny
silicon chips as millions and millions of lines of code.

• But just because we can’t see the complexity doesn’t
mean that it has gone away.

The increasing risk of software failure
What did NASA do to prevent bugs and failures?

Software Apocalypse | 19 April 2018 | 5

Organizational Context & Constraints

Development Team and Processes

Defect	inser+on	rate	(Construc+on	Ac+vi+es)	

Defect	removal	rate	(Quality	Ac+vi+es)	

Reqs	 Design	 Coding	 Tes+ng	
Delivered	
Defects	

Quality	norms	for	all	development	products		

Rela5ve	cost	of	a	bug	fix	
€	1	 €	5	 €	10	 €	20	 €	50	

Best 	600*	
Average 	1.200	
Worst	 	2.160	

Best 	725	
Average 	1.450	
Worst	 	2.610	

Best 	975	
Average 	1.950	
Worst	 	3.510	

Best 	200	
Average 	400	
Worst	 	720	

Best 	517	
Average 	924	
Worst	 	?	

Best 	690	
Average 	1.232	
Worst	 	?	

Best 	1.037	
Average 	1.852	
Worst	 	?	

Best 	156	
Average 	280	
Worst	 	?	

Best 	100	
Average 	712	
Worst	 	4.050	

*Based on a system of 1.000 function points

The increasing risk of software failure
What did NASA do to prevent bugs and failures?

Software Apocalypse | 19 April 2018 | 6

• Guidelines and best practices for development processes and software work products

The increasing risk of software failure
What did NASA do to prevent bugs and failures?

Software Apocalypse | 19 April 2018 | 7

• Guidelines and best practices for development processes and software work products

The increasing risk of software failure
What about our modern society?

Software Apocalypse | 19 April 2018 | 8

Mobile Medical Devices
Everything Connected

Smart Contracts

The increasing risk of software failure
What about our modern society?

Software Apocalypse | 19 April 2018 | 9

• May 6, 2010, the Flash Crash, was a
United States trillion-dollar stock
market crash, which lasted for
approximately 36 minutes

• Just prior to the Flash Crash, the
trader placed thousands of future
contracts which he planned on
canceling later.

• Computer based trading algorithms
reacted on a spoofing algorithm used
by a trader.

The increasing risk of software failure
What about our modern society?

Software Apocalypse | 19 April 2018 | 10

• Be prepared for normal accidents when
• Systems are tight coupled, and
• Have complex interactions

What measures do we have in place?

Software Apocalypse | 19 April 2018 | 11

• What did we learn so far?
• Software enables us to build the most complex machines ever
• It is hard to build high quality, even the best in class teams leave defects in software
• There are many standards and guidelines for building (safety) critical software
• In our increasing connected world, system failures have increasing impact, normal accidents
• More and more systems and their connections become critical for our society and our lives

• So, …

• How do we develop our professional workforce to cope with this increasing complexity and
criticality?

What measures do we have in place?
Do we trust the programmer?

Software Apocalypse | 19 April 2018 | 12

What measures do we have in place?
Do we trust programmers and IT management?

Software Apocalypse | 19 April 2018 | 13

• Learning how to program is still the largest obstacle in higher education.

• Still the number of programmers roughly doubles every five year. Where do those programmers
come from?

• So the market offers different possibilities to become a programmer
• When you go to the website icttrainingen.nl you can apply for title Certified Java Programmer.

It will cost you 40 hours of study and paying for the exam. When you pass the exam you
receive the certificate

• Programit.nl offers three month courses to become a junior C# or Java developer.

• And they are hired…

What measures do we have in place?
Do we trust programmers and IT management?

Software Apocalypse | 19 April 2018 | 14

Kind of software

Throw Away Business Systems Mission Critical Safety Critical
Example software Campaign Site

Prototypes
Excel calculations
One time reports

Internet site
Inventory management
Games
Payroll system

Embedded software
Packaged software Software
tools
Web services

Avionics software Embedded
software Medical devices
Operating systems

Requirements Ad hoc, informal requirements
specification

Informal requirements
specification

Semiformal requirements
specification
As-needed requirements
reviews

Formal requirements
specification
Formal requirements
inspections

Design Design and coding are
combined

Design and coding are
combined

Architectural design
Informal detailed design
As-needed design reviews

Architectural design
Formal architecture inspections
Formal detailed design
Formal detailed design
inspections

Construction Individual coding
No check-in procedure

Pair programming or individual
coding
Informal check-in procedure or
no check-in procedure

Pair programming or individual
coding
Informal check-in procedure
As-needed code reviews

Pair programming or individual
coding
Formal check-in procedure
Formal code inspections

Testing & QA Developers test their own code
Trial and error
No separate testing group

Developers test their own code
Test-first development
Little or no testing by a
separate test group

Developers test their own code
Test-first development
Separate testing group

Developers test their own code
Test-first development
Separate testing group
Separate QA group

What measures do we have in place?
Do we trust the programmers and IT management?

Software Apocalypse | 19 April 2018 | 15

Kind of software

Throw Away Business Systems Mission Critical Safety Critical
Example software Campaign Site

Prototypes
Excel calculations
One time reports

Internet site
Inventory management
Games
Payroll system

Embedded software
Packaged software Software
tools
Web services

Avionics software Embedded
software Medical devices
Operating systems

Requirements Ad hoc, informal requirements
specification

Informal requirements
specification

Semiformal requirements
specification
As-needed requirements
reviews

Formal requirements
specification
Formal requirements
inspections

Design Design and coding are
combined

Design and coding are
combined

Architectural design
Informal detailed design
As-needed design reviews

Architectural design
Formal architecture inspections
Formal detailed design
Formal detailed design
inspections

Construction Individual coding
No check-in procedure

Pair programming or individual
coding
Informal check-in procedure or
no check-in procedure

Pair programming or individual
coding
Informal check-in procedure
As-needed code reviews

Pair programming or individual
coding
Formal check-in procedure
Formal code inspections

Testing & QA Developers test their own code
Trial and error
No separate testing group

Developers test their own code
Test-first development
Little or no testing by a
separate test group

Developers test their own code
Test-first development
Separate testing group

Developers test their own code
Test-first development
Separate testing group
Separate QA group

Development direction of programmer workforce

Development direction of the IT systems in our society

What measures do we have in place?
Do we trust programmers and IT management?

Software Apocalypse | 19 April 2018 | 16

Kind of software

Throw Away Business Systems Mission Critical Safety Critical

Example software Campaign Site

Prototypes

Excel calculations

One time reports

Internet site

Inventory management

Games

Payroll system

Embedded software

Packaged software Software

tools

Web services

Avionics software Embedded

software Medical devices

Operating systems

Requirements Ad hoc, informal requirements

specification

Informal requirements

specification

Semiformal requirements

specification

As-needed requirements

reviews

Formal requirements

specification

Formal requirements

inspections

Design Design and coding are

combined

Design and coding are

combined

Architectural design

Informal detailed design

As-needed design reviews

Architectural design

Formal architecture inspections

Formal detailed design

Formal detailed design

inspections

Construction Individual coding

No check-in procedure

Pair programming or individual

coding

Informal check-in procedure or

no check-in procedure

Pair programming or individual

coding

Informal check-in procedure

As-needed code reviews

Pair programming or individual

coding

Formal check-in procedure

Formal code inspections

Testing & QA Developers test their own code

Trial and error

No separate testing group

Developers test their own code

Test-first development

Little or no testing by a

separate test group

Developers test their own code

Test-first development

Separate testing group

Developers test their own code

Test-first development

Separate testing group

Separate QA group

Development direction of programmer workforce

Development direction of the IT systems in our society

As a Don Quixote we regard an
increasing flock of sheep

as an army of professionals

The rough road ahead

Software Apocalypse | 19 April 2018 | 17

• Accidents will be increasingly normal…
• … so what to do next?

• Create awareness for the upcoming apocalypse
• Stimulate a Continuous dialog between developers

and managers
• Create a craftsmanship culture

• High quality education, certification
• Master – Apprentice model
• It will be hard work, requiring continuous attention

• Or stop writing source code
• Create less code, we humans are not fit to write code
• Develop new approaches to instruct machines

The rough road ahead..
Join the struggle for increasing craftsmanship!

Software Apocalypse | 19 April 2018 | 18

• I am worried about the upcoming software
apocalypse in a world which increasingly
depends on software systems

• Increasing craftsmanship is required and
should be created and promoted

• Will you join me?

Wim Goes
Valori Software Improvement
E: WimGoes@valori.nl
T: 06 50 999 666

