
Security is ROT!

Security is rot!

Regulation

TechnologyOrganisation

Fuel

OxygenTemperature

Rot in Dutch: rotten, squad, putrid

Regulation

It has been chef sache all along

General Data Protection Regulation

(GDPR)

Article 5

"The controller shall be responsible for, and be able to demonstrate compliance

with, paragraph 1 (‘accountability’).”

Article 24

"Taking into account the nature, scope, context, and purposes of processing [...], the

controller shall implement appropriate technical and organizational measures to

ensure and demonstrate that processing is performed in accordance with this

Regulation.”

Article 32

"Taking into account the state of the art, costs of implementation [...] the controller

and processor shall implement appropriate technical and organizational measures

to ensure a level of security appropriate to the risk."

NIS2 Directive

Article 20

"Member States shall
ensure that members of
the management bodies

of essential and important
entities are required to
follow training, and are

responsible for the entity’s
compliance with

cybersecurity risk
management measures."

Management

Responsibility

• ISO/IEC 27001 (Information Security): "Top
management shall establish, implement, maintain
and continually improve an ISMS..."

• Policy, objectives, and responsibilities

• BIO (Baseline Information Security for Government):
"The organization is structured to ensure information

security is manageable."

• Management must be ‘in control’

• NEN 7510 (Healthcare sector): "Management is
responsible for implementing information security..."

What should management do?

• Define goal

• Define and approve policies

• Determine organizational structure

• Define roles, tasks, authorities

• Establish governance and security ownership

• Assign responsibilities

• Who is responsible for what?

• Use of RACI models, job descriptions

• Monitor and improve

• Conduct reviews, audits, and evaluations

• 'Security is a management responsibility, not just an IT task.'

Who’s responsible?

Who’s

responsible?

The CEO or

top executive

is ultimately

accountable

Technology

Flying past venus

• P-37 / Mariner R-1

• 9 kilograms

• 54,000 components

• Maintain contact with Earth for 15
weeks

• Launch 22 July 1962

• Lots of toys on board:
• Microwave Radiometer

• Infrared Radiometer

• Fluxgate Magnetometer

• Cosmic Dust Detector

• Solar Plasma Spectrometer

• Energetic Particle Detectors

• Ionization Chamber

At launch

• Range Safety Officer enter self-
destruct order at T+294.5 (4:54.30)

• Damage $18.5 million (now some
$192 million)

• Software bug was missing: -

Phobos 1

• Russian mission to view Mars and the moons Phobos and Deimos

• Journey of 200 days

• Two correction moments between days 7 and 20 and between 185
and 193.

• 2 September 1988 - no signal from the probe

• Cause a missing character: -

• A computer, which was supposed to check all commands failed

• Time pressure caused test code to remain in the system (EPROM

June 4th 1996
Photo: ©ESA

Ariane 4 5

• Normal behaviour 36 seconds

• Simultaneous failure of the two inertial reference systems

• Incorrect turning of the nozzles of the boosters and the
Vulcain engine

• Abrupt change of course

• The self-destruction of the rocket launcher.

• The rocket software had been inherited from the Ariane 4
rocket gave erroneous signals to engines

• The software error occurred because a 64-bit floating point
value was incorrectly converted to a 16-bit integer, leading to
an "integer overflow"

• Damage approximately: €500 million

Onvoldoende systeemtests

"The failure of Ariane 501 was caused by

the complete loss of guidance and

attitude information 37 seconds after

start of the main engine ignition sequence

(30 seconds after lift-off). This loss of

information was due to specification and

design errors in the software of the

inertial reference system. The extensive

reviews and tests carried out during the

Ariane 5 development programme did

not include adequate analysis and

testing of the inertial reference system or
of the complete flight control system,

which could have detected the potential

failure."

Bad testing

• Knight Capital: In 2012, US trader Knight Capital
implemented new code with a hidden flaw

• Untested old functionality was accidentally activated,
causing the software to automatically buy $7 billion
worth of shares in 45 minutes

• The company had to sell those positions at a huge loss
(damage $440 million)

• Was fined $12 million dollars

• Cause: a simple human error during deployment and
insufficient testing of the production situation

Symptoms of bad

software

• Security leaks: OWASP Top 10 - the same vulnerabilities for years.

• Visual: graph of number of data breaches per year / OWASP Top 10

trends.

Chaos Report –

Standish Group
• 4 November 2024

• 50,000 projects analysed:

• 31% successful (on time, on budget,
satisfactory result)

• 50% not on time, not within budget
and/or not satisfactory result)

• 19% are terminated early

Zibdo survey is more negative

• 31.1% of software projects are cancelled before
completion

• 52.7% exceed original budget by an average of
189%

• 16.2%, of projects are delivered on time and on
budget

Bad software an

expensive hobby
• CISQ The Cost of Poor Software Quality in the US:

A 2022 Report

• By 2022 already costs $2.41 trillion
(2,410,000,000,000) overall and $1.52 trillion
(1,520,000,000,000)

• Losses from cybercrime due to existing software
vulnerabilities soared

• Problems in the software supply chain involving
underlying third-party components (especially
Open Source Software, also known as OSS) have
increased significantly.

• The growing impact of TD (Technical Debt) has
become the biggest obstacle to making changes
to existing code bases

Estimate 2020

• Estimate 3 Pillar global

• $260 billion worth of failed projects
cancelled

• Operational disruptions $1.56 trillion

More than just

statistics

• No more isolated incidents

• Deep-seated, systemic
inefficiencies

• Significant strategic business risk

• Broad failure in planning,
execution and quality assurance
processes

• High rate of failure and high
costs: vicious cycle?

The culture of mediocracy

• We accept the risk

• We put it on the backlog

• We accept the technical debt

• This is a non-functional

• This is a feature request

• We don't accept the bug

• 'Do we not strike out with security'

And it's a job

It's just

money:

there

will be

no

deaths

'Aviation is all about life and death'

Therac-25 (1985-1987)

• The Therac-25 was a radiation therapy
machine used to treat cancer. Due to
software errors, patients sometimes received
extremely high doses of radiation.

• At least five patients died as a direct result of
the overdoses, and several others were
seriously injured.

Toyota Onboard

Software (2009-2010)

• Problems were reported with the
onboard software of Toyota vehicles,
leading to unintended acceleration
and braking problems.

• Several fatalities were reported as a
result of these software problems,
although the exact number of
fatalities is difficult to determine.

Causes Toyota

• Spaghetti code; legacy: Unorganised, complex code
("spaghetti code") makes maintenance and debugging difficult

• No standards: Ignoring coding standards leads to many
defects. (For example, Toyota did not follow voluntary MISRA-C
standard and had 81,514 rule violations in the engine software.
This equals thousands of potential bugs.

• Global variables chaos: Good design minimises global
variables, but in bad code there are thousands of them.
(Toyota's engine code had >10,000 global variables, while
the academic norm is 0). This indicates lack of structure and
modularity.

Crowdstrike
• CrowdStrike incident:

• When CrowdStrike, a reputable security
company, was itself hit by a glitch, it became
clear that even the experts are vulnerable to
mistakes

• Windows 10 or 11 problem

• The impact of poor validation became
apparent

• Aviation example: 5,078

• Delta Air Lines claims ½ billion in damages

• CrowdStrike blames Delta's lack of security

Patriot systeem

(1991)

• During the Gulf War

• Due to a rounding error, a Scud missile is
not intercepted during the Gulf War (timing
issue)

• Dhahran, Saudi Arabia

• 28 dead

Infusion pomp

• Multiple suppliers

• Multiple software bugs

• Several deaths

Supplements affair

• The Bulgarian fraud

• Dutch government claimed back thousands of euros in
benefits from parents based on automated decisions

• There was no adequate validation of data, and human
circumstances were not taken into account

• Thousands of parents were wrongly accused of fraud,

leading to financial and social disruption

• Human touch and validation are often lacking in

complex, automated processes, leading to serious errors

Boeing 737 Max: flawed

validation
• Remote management

• Over-reliance on Technology: Boeing introduced a new

automation system (MCAS) without sufficient pilot training or
thorough testing.

• Reliance on assumptions: The company assumed pilots
would react quickly to system failures, but these assumptions

were not validated in realistic scenarios.

• Errors in validation process: Internal reports about the
system's risks were ignored. Crucial safety checks were
missing in the rush to get the device to market.

• Consequences: Two fatal crashes (Lion Air and Ethiopian
Airlines) and global grounding of the 737 Max, with thousands
of lives affected.

• Lesson: Validation processes must be complete and
impartial. Assumptions without thorough testing can have
catastrophic consequences.

Failure to validate a bad and
expensive joke
• Online scams in US estimated at $8.8 billion

• The Boeing affair

• Damage 737-Max affair between $20 billion and
$30 billion

• Corporate recovery: $25 billion

• The benefits affair:

• Bulgarian fraud: up to €4 million

• Benefits affair: 14 billion in 2024 and the counter
is ticking away

Not learning from the

past – as well

• 1991 - SAS flight 751

• Ice in the engine

• Automatic Thrust Restoration-system

Techno-optimism

• This time we do make a perfect piece of software

• Belief in Unlimited Potential: Techno-optimism refers
to the belief that technology can solve most, if not all,
of humanity's problems

• No regard for risks

• Overturning critical voices

• Reduced sense of reality

Interplay of multiple causes

• Poor requirements lead to poor design/logic

• Poor collaboration leads to incomplete palette of requirements

• Poor consultation/collaboration leads to changing
requirements

• Bad designs lead to bad code

• Unrealistic timelines lead to shortcuts and: bad code

• Tight timelines lead: to less testing

• Cutting corners leads to backlog

• Bad code leads to technical dept

• Bad code leads to security problems

Causes - Maintenance is forgotten

• Software is seen as 'finished'

• Legacy systems without ownership.

• Example: COBOL systems in banks and
governments

We rely on

each other's

software

Failure: next level –

Vibe coding

1. Collect large amounts of code written
under pressure

2. Feed these to an AI model for training

3. Appoint people to interact with model

4. Above all, do not teach them programming

5. Choose a language that is hard to read

(e.g. Perl or Javascript)

6. Choose a core business process

7. Get new software vibe coded

Success (Standish

Group)

• Executive support - management supports
employees emotionally and financially

• Emotional maturity - a set of behaviours
that describe how employees work
together

• User engagement - encouraging users to
share their experiences and taking their
opinions into account

• Optimisation - increasing business
efficiency and optimising processes

• Skilled personnel - describes the high skill
level of employees in technology and
business

Success(Standish

Group)

• SAME (Standard Architectural Management
Environment) - a set of practices related to

software production, deployment, and use.

• Proficient Agile knowledge - defines
knowledge and skills in Agile methodology.

• Modest execution - describes processes

consisting of simple, automated elements and
limited use of project management tools.

• Project management expertise - a set of
project management skills.

• Clear business objectives - the ability to
understand and align project objectives with
business objectives.

Success (Standish)

• Good place. A good place is a working environment where the team works
on software. It consists of a sponsor, a team and all other employees who

work with them during the project. The influence of other collaborators
can have a negative or positive impact on software development, so it is
important to continuously update and improve the professional
qualifications of collaborators.

• Good team. A good team drives the project and has the greatest impact
on the final result. The sponsor motivates, guides and instructs the team.
But ultimately it depends on the team whether it will be able to deliver the
expected results. One of the Standish Group's recommendations is to

form small teams.

• Good sponsor. The Standish Group defines a good sponsor as the heart of
the project, without which it cannot exist. According to them, the most

important aspect that leads to success is continuously improving a
sponsor's skills so that they can effectively lead and support the team
during the project. At the same time, this is the easiest part of the project
to improve because each team has only one sponsor.

Standish: Agile rocks

We can summarise the main recommendations as follows:

1. Teams should use the Agile methodology.

2. Instead of creating projects, we should focus on continuous and small
steps.

3. We should focus on improving factors such as a good place, a good team
and a good sponsor.

4. We should avoid assigning managers to projects and reduce the use of
project management tools

What else can you do?

• Test culture

• Security by Design

• Testing

• Taking problems seriously

• No sixes culture

• Good CI/CD pipeline

• Focus on code quality

• Focus on security

• Sound, regular and competent training

• TESTING!

Can it really be done?

• What sometimes there is time
pressure

• You can't arrange everything

Coronamelder:

privacy first, security first

Design

• Decentralised system

• No requesting information from users

• Tight retention

• As difficult as possible to link to person

• No traceability to device

• Only necessary data

• Only transmit data after verifications

• App does not see codes

Validated

• Purpose limitation in law

• Penal provision

• No statistics party

• Cryptographically correct

• (sign everything)

• No backups

• Detecting misuse

Organisation

An abritrary incident ! Friday

• Sjaak (CISO) is on a short vacation.

• Phishing incident multiple accounts
compromised.

• Backup security staff unreachable

• Sjaak joins the crisis call himself.

Later that day

• Anti-phishing tool was disabled months ago
by an IT staffer

• Advice: reset accounts, investigate impact,
inform the board.

• Business unit refuses full cooperation (“too
much hassle”).

A couple of hours later

• Hundreds of thousands mails sent

• Sjaak suggests to inform the board

• Serious damage: company domain
blacklisted due to outgoing spam

• Sjaak acts quickly, starts getting the domain
off blocklists

• Advice largely ignored; incident not reported
up the chain

An arbritrary incident -

Sunday

• Sjaak receives a meeting invite from ad-
interim manager

• Prepares a list of key points to clarify his
actions.

!Monday – the meeting

• Manager accuses CISO of being:

• Pushy

• Questioned if incidents are his role

• Not clear about the role

• even “blackmailing”

• Incorrect on advise. Resetting an
account after several days is usefless

• Asks Sjaak to resign as CISO with
some time to think

• Citing “health reasons” for ongoing
tasks.

The aftermath

• Sick leave

• Legal conflict

• CISO had to leave the company

Security triangle

Regulation

TechOrganisation

Who’s responsible?

Who’s

responsible?

The CEO or

top executive

is ultimately

accountable

So if… if
responsibilities

are vague…

Who are you

really angry

at?

Sjaak was talking to a

manager

• Sjaak wasn’t talking to the board

• There was a non-board level in between

• This led to risk filtering

• Manager was clearly incompetent on
information security

If you're not at the table, you're on the

menu

Sjaak wasn’t a chief

(as many CISO’s

aren’t)

• You’re not listed in the Kamer van
Koophandel as responsible

• You’re not responsible for security

• You’re not protected from getting
sacked

• His lawyer used a perfect term:
CISO-employee

• Don’t behave like one

When you are

talking to the

board

Sjaak’s safe workplace

ü Role Ambiguity and Unclear Responsibilities

ü Lack of Managerial Support

ü Blame and Negative Organizational Culture

ü Disrespect for Professional Expertise

ü Negative Feedback and Workplace

Intimidation

ü Undermining Autonomy and Decision-making

ü Stressful Environment and lack of trust

Insecurity at work (studies)

• Lack of structure leads to insecurity
about roles and responsibilities
leading to miscommunication, stress
and fear

• Lack of trust leads to lack of
engagement, feelings of isolation and
unsafety. That causes less openess,
transparency.

• Lack of structure leads to more
changes in the organization adding to
the uncertainty.

Cost of information security

• Dutch Cyber Security Council recommends allocating 10-20% of ICT budget

• Investment level depends on:

• Organization's risk profile

• Sector (Health, Financial sectors higher risk)

• Company size (SMEs relatively higher costs)

% ICT budget Low Medium High Very High

0-5% ! ! ! !

5-10% " ! ! !

10-15% # # " "

15-20% #* #* # "

20-25% ⚠ ⚠ #* #

*For SMEs: at least use 'High' as a baseline.

You can make a difference

for one goal

